(本小题满分12分)已知椭圆的两个焦点分别为 ,离心率为,过 的直线与椭圆交于两点,且的周长为8. (1)求椭圆C的方程; (2)过原点O的两条互相垂直的射线与椭圆C分别交于A,B两点,证明:点O到直线AB的距离为定值,并求出这个定值.
某车间生产一种仪器的固定成本是元,每生产一台该仪器需要增加投入元,已知总收入满足函数:,其中是仪器的月产量.(利润=总收入-总成本).(Ⅰ)将利润表示为月产量的函数;(Ⅱ)当月产量为何值时,车间所获利润最大?最大利润是多少元?
已知,(Ⅰ)求图象的对称轴方程;(Ⅱ)若将函数的图象向右个单位长度后得到函数的图象,请写出函数的解析式;(Ⅲ)请通过列表、描点、连线,在所给的平面直角坐标系中画出函数在上的简图.
(Ⅰ) 计算:;(Ⅱ) 在中,,求的值,并判断三角形的形状.
已知全集,,, (Ⅰ)求; (Ⅱ)若,求实数的取值范围.
设函数.(1)当时,记函数在[0,4]上的最大值为,求的最小值;(2)存在实数,使得当时,恒成立,求的最大值及此时的值.