以下茎叶图记录了甲、乙两组各四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。(Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。(其中为,,…… 的平均数)
选修4-5:不等式选讲(本小题满分10分) 若,且,求的最小值.
选修4-4:坐标系与参数方程[(本小题满分10分) 己知直线 的参数方程为(t为参数),圆C的参数方程为.(a>0. 为参数),点P是圆C上的任意一点,若点P到直线的距离的最大值为,求a的值。
.选修4-2:矩阵与变换(本小题满分10分) 已知 ,矩阵所对应的变换 将直线 变换为自身,求a,b的值。
选修4-1:几何证明选讲 如图,0是△ABC的外接圆,AB = AC,延长BC到点D,使得CD = AC,连结AD交O于点E.求证:BE平分ABC
(本小题满分16分)己知函数 (1)若,求函数 的单调递减区间; (2)若关于x的不等式 恒成立,求整数 a的最小值: (3)若 ,正实数 满足 ,证明: