(本小题12分)下图是一几何体的直观图、主视图、俯视图、左视图.(Ⅰ)若为的中点,求证:面;(Ⅱ)证明面;(Ⅲ)求面与面所成的二面角(锐角)的余弦值.
设等差数列的前项和满足,.(1)求的通项公式;(2)求的前项和.
已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.(1)求证:当时;(2)若当时有,求椭圆的方程;(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.
已知函数.(1)当时,求函数的单调区间;(2)若函数在处取得极值,对,恒成立,求实数的取值范围;(3)当时,求证:.
已知椭圆经过点,离心率,直线与椭圆交于,两点,向量,,且.(1)求椭圆的方程;(2)当直线过椭圆的焦点(为半焦距)时,求直线的斜率.
已知动圆()(1)当时,求经过原点且与圆相切的直线的方程;(2)若圆恰在圆的内部,求实数的取值范围.