在数列中,已知.(1)求数列的通项公式;(2)求数列的前项和.
如图,设、是平面内相交成角的两条数轴,、分别是与轴、轴正方向同向的单位向量。若向量,则把有序实数对叫做向量在坐标系中的坐标。若,则=
已知三次函数为奇函数,且在点的切线方程为(1)求函数的表达式;(2)已知数列的各项都是正数,且对于,都有,求数列的首项和通项公式;(3)在(2)的条件下,若数列满足,求数列的最小值.
已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。(Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程;(Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值;(Ⅲ)讨论椭圆C及其“知己圆”的位置关系.
2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式已知每日的利润,且当时,.(1)求的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图) (1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
附:下面的临界值表供参考:
(参考公式:,其中)