(本小题满分14分)已知数列{}是首项为等于1且公比不等于1的等比数列,是其前项的和,成等差数列.(1) 求和 ;(2) 证明 12成等比数列
如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1. (1)证明:MN∥平面A1ABB1; (2)求几何体C—MNA的体积.
已知函数 (1)若,求在图象与轴交点处的切线方程; (2)若在(1,2)上为单调函数,求的范围.
某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .已知备选的5个居民小区中有三个非低碳小区,两个低碳小区. (Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率; (Ⅱ)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区是否达到“低碳小区”的标准?
(百千克/户)
已知 (Ⅰ)若,求使函数为偶函数。 (Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。
已知函数,. (Ⅰ) 求函数在点处的切线方程; (Ⅱ) 若函数与在区间上均为增函数,求的取值范围; (Ⅲ) 若方程有唯一解,试求实数的值.