(本小题满分12分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)这名学生在上学路上因遇到红灯停 留的总时间的分布列及期望
、、为的三内角,且其对边分别为a、b、c,若,,且. (1)求角; (2)若,三角形面积,求的值.
对,不等式所表示的平面区域为,把内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列: (1)求,; (2)数列满足,且时.证明当时,; (3)在(2)的条件下,试比较与4的大小关系.
已知过定点,圆心在抛物线:上运动,为圆在轴上所截得的弦. ⑴当点运动时,是否有变化?并证明你的结论; ⑵当是与的等差中项时, 试判断抛物线的准线与圆的位置关系, 并说明理由。
设的极小值为,其导函数的图像经过点,如图所示, (1)求的解析式; (2)若对都有恒成立, 求实数的取值范围。
如图,正三棱柱的底面边长为,侧棱长为,点在棱上. (1)若,求证:直线平面; (2)是否存在点,使平面⊥平面,若存在,请确定点的位置,若不存在,请说明理由; (3)请指出点的位置,使二面角平面角的大小为.