(本小题满分12分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)这名学生在上学路上因遇到红灯停 留的总时间的分布列及期望
如图,四棱锥中,面面,侧面是等腰直角三角形,,且∥,,.(Ⅰ)求证:;(Ⅱ)求直线与面的所成角的正弦值.
已知不等式组的解集是,且存在,使得不等式成立.(Ⅰ)求集合;(Ⅱ)求实数的取值范围.
在中,角,,所对的边长分别为,,,.(Ⅰ)若,,求的值;(Ⅱ)若,求的最大值.
已知正项数列中,,点在抛物线上.数列中,点在经过点,以为方向向量的直线上.(Ⅰ)求数列,的通项公式;(Ⅱ)若,问是否存在,使得成立?若存在,求出的值;若不存在,说明理由;(Ⅲ)对任意的正整数,不等式成立,求正数的取值范围.
设椭圆的左、右焦点分别为,,上顶点为,过与垂直的直线交轴负半轴于点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)若过、、三点的圆恰好与直线相切,求椭圆的方程;(Ⅲ)过的直线与(Ⅱ)中椭圆交于不同的两点、,则的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.