(本题7分)某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%.在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中.全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由.
分别说出下列函数的名称: (1)y=2x-1 (2)y=-3x2, (3)y= (4)y=3x-x2 (5)y=x
已知二次函数的图象与轴交于点(,0)、点,与轴交于点. (1)求点坐标; (2)点从点出发以每秒1个单位的速度沿线段向点运动,到达点后停止运动,过点作交于点,将四边形沿翻折,得到四边形,设点的运动时间为. ①当为何值时,点恰好落在二次函数图象的对称轴上; ②设四边形落在第一象限内的图形面积为,求关于的函数关系式,并求出的最大值.
已知:如图,正方形中,为对角线,将绕顶点逆时针旋转°(),旋转后角的两边分别交于点、点,交于点、点,联结. (1)在的旋转过程中,的大小是否改变,若不变写出它的度数,若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明); (2)探究△与△的面积的数量关系,写出结论并加以证明.
已知抛物线:的顶点在坐标轴上. (1)求的值; (2)时,抛物线向下平移个单位后与抛物线:关于轴对称,且过点,求的函数关系式; (3)时,抛物线的顶点为,且过点.问在直线上是否存在一点使得△的周长最小,如果存在,求出点的坐标, 如果不存在,请说明理由.
在边长为1的正方形网格中,正方形与正方形的位置如图所示. (1)请你按下列要求画图: ① 联结交于点; ② 在上取一点,联结,,使△与△相似; (2)若是线段上一点,连结并延长交四边形的一边于点,且满足,则的值为_____________.