(文)(本小题满分12分)在某社区举办的《2008奥运知识有奖问答比赛》中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲回答对这道题的概率是,甲、丙两人都回答错的概率是,乙、丙两人都回答对的概率是. (1)求乙、丙两人各自回答对这道题的概率. (2)求甲、乙、丙三人中恰有两人回答对该题的概率
((本小题满分10分) 选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点. (1)写出直线的极坐标方程与曲线C的普通方程; (2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.
(.选修4—1:几何证明选讲 如图,PA切圆O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转到O D. (1)求线段PD的长; (2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.
(.(本题满分12分) 已知二次函数和“伪二次函数”(、、), (I)证明:只要,无论取何值,函数在定义域内不可能总为增函数; (II)在二次函数图象上任意取不同两点,线段中点的横坐标为,记直线的斜率为, (i)求证:; (ii)对于“伪二次函数”,是否有(i)同样的性质?证明你的结论.
((本题满分12分) 已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点. (Ⅰ)求的取值范围; (Ⅱ)求△面积的最大值.
(本小题满分12分) 如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (1)求证:BD⊥FG; (2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由. (3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.