某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
已知,如图13,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC交于点E,EF⊥BD,垂足为F,我们可以证明+=成立,若将图13中的垂直改为斜交,如图14,AB∥CD,AB与BC交于点E,过点E作EF∥AB交BD于F,则(1) +=还成立吗?如果成立,给出证明;如果不成立,请说明理由。(2) 请找出S△ABC,S△BED和S△BDC间的关系,并给出证明。
如图12,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45°(1) 求证:△ABD∽△DCE(2) 设BD=x,AE=y,求y与x的函数关系式
如11图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AE,F为AE上一点,且∠BFE=∠C(1) 求证:△ABF∽△EAD(2) 若AB=4,S ABCD=,求AE的长(3) 在(1)、(2)条件下,若AD=3,求BF的长(计算结果可含根号)
如图10,为了测量一棵树AB的高度,测量者在D点立一高CD等于2m的标杆,现测量者从E处可以看到标杆顶点C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,求树高。
已知四边形ABCD与四边形A′B′C′D′相似,且AB:BC:CD:DA=20:15:9:8,四边形A′B′C′D′的周长为26,求四边形A′B′C′D′各边的长。