(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.(1)证明:AE⊥PD; (2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
已知,,且. (1)将表示为的函数,并求的单调增区间; (2)已知分别为的三个内角对应的边长,若,且,,求的面积.
某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为
已知函数,(其中). (1)求的单调区间; (2)若函数在区间上为增函数,求的取值范围; (3)设函数,当时,若存在,对任意的,总有成立,求实数的取值范围.
如图,设是圆上的动点,点是在轴上投影,为上一点,且.当在圆上运动时,点的轨迹为曲线. 过点且倾斜角为的直线交曲线于两点. (1)求曲线的方程; (2)若点F是曲线的右焦点且,求的取值范围.
在等差数列中,. (1)求数列的通项公式; (2)若数列满足(),则是否存在这样的实数使得为等比数列; (3)数列满足为数列的前n项和,求.