(本小题满分12分)数列为一等差数列,其中,,(1)请在中找出一项,使得、、成等比数列;(2)数列满足,求通项公式
如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.(Ⅰ)求证:(Ⅱ)求三棱锥的体积;(Ⅲ)求二面角的余弦值.
已知点,直线,动点到点的距离等于它到直线的距离.(Ⅰ)求点的轨迹的方程;(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?
已知函数在点处的切线方程为.(Ⅰ)求的值;(Ⅱ)求的单调区间.
已知函数f(x)的定义域为,且满足f(2)=1,f(xy)=f(x)+f(y),(1)求f(1),f(4), f(8)的值;(2)函数f(x)当时都有.若成立,求的取值范围.
运货卡车以每小时x千米的速度匀速行驶120千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油升,司机的工资是每小时12元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.