已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程
已知函数. (1)当,且是上的增函数,求实数的取值范围; (2)当,且对任意实数,关于的方程总有三个不相等的实数根,求实数的取值范围.
已知抛物线,过焦点且垂直轴的弦长为6,抛物线上的两个动点和,其中且,线段的垂直平分线与轴交于点. (1)求抛物线方程; (2)试证线段的垂直平分线经过定点,并求此定点; (3)求面积的最大值.
在三棱柱中,侧面是边长为2的正方形,点在平面上的射影恰好为的中点,且,设为中点, (1)求证:平面; (2)求与平面所成角的正弦值.
数列满足,(). (1)证明:数列是等差数列; (2)求数列的通项公式; (3)设,求数列的前项和.
在中,,,分别为内角,,的对边,且. (1)求; (2)若,,求.