(本题满分15分)已知定义域为的函数是奇函数。(1)求的值;(2)证明:函数在上是减函数;(3)若对任意的,不等式恒成立,求的取值范围;
(本小题满分12分)已知向量,,,.函数,若的图象的一个对称中心与它相邻的一个对称轴之间的距离为1,且过点. (Ⅰ)求函数的表达式.(Ⅱ)当时,求函数的单调区间.
(本小题满分12分)一个四棱锥的底面是边长为的正方形,且。(1)求证:平面;(2)若为四棱锥中最长的侧棱,点为的中点.求直线SE.与平面SAC所成角的正弦值。
(本小题满分12分)为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列的前四项,后6组的频数从左到右依次是等差数列的前六项.(I)求等比数列的通项公式;(II)求等差数列的通项公式;(III)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小.
(本小题满分12分)已知函数(Ⅰ)求证:对于的定义域内的任意两个实数,都有;(Ⅱ)判断的奇偶性,并予以证明.
(本小题满分12分)已知集合A={x|x2-3x+2=0},B={x|x2-mx+2=0},且AB=B,求实数m的取值范围。