((本小题满分14分) 如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S— CD—A的平面角为,M为AB中点,N为SC中点. (1)证明:MN//平面SAD; (2)证明:平面SMC⊥平面SCD; (3)若,求实数的值,使得直线SM与平面SCD所成角为
数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;当时,,,.(Ⅰ)求;(Ⅱ)猜想,并用数学归纳法证明.
如图(1),等腰直角三角形的底边,点在线段上,于,现将沿折起到的位置(如图(2)).(Ⅰ)求证:;(Ⅱ)若,直线与平面所成的角为,求长.
某舞蹈小组有2名男生和3名女生.现从中任选2人参加表演,记为选取女生的人数,求的分布列及数学期望.
已知各项均为正数的两个无穷数列、满足.(Ⅰ)当数列是常数列(各项都相等的数列),且时,求数列的通项公式;(Ⅱ)设、都是公差不为0的等差数列,求证:数列有无穷多个,而数列惟一确定;(Ⅲ)设,,求证:.
已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致.(Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围;(Ⅱ)设且,若函数和在以为端点的开区间上单调性一致,求的最大值.