(本小题满分12分)2010年推出一种新型家用轿车,购买时费用为14.4万元,每年应交付保险费.养路费及汽油费共0.7万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元. (1)设该辆轿车使用n年的总费用(包括购买费用.保险费.养路费.汽油费及维修费)为f(n),求f(n)的表达式; (2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?
设, (1)若在上无极值,求值; (2)求在上的最小值表达式; (3)若对任意的,任意的,均有成立,求的取值范围.
已知函数, (1)若,求的单调区间; (2)若函数存在两个极值点,且都小于1,求的取值范围;
已知为奇函数的极大值点, (1)求的解析式; (2)若在曲线上,过点作该曲线的切线,求切线方程.
如图,已知球的半径为,球内接圆锥的高为,体积为, (1)写出以表示的函数关系式; (2)当为何值时,有最大值,并求出该最大值.
设, (1)解方程; (2)解不等式.