设斜率为的直线交椭圆:于两点,点为弦的中点,直线的斜率为(其中为坐标原点,假设、都存在).(1)求×的值. (2)把上述椭圆一般化为(>>0),其它条件不变,试猜想与关系(不需要证明).请你给出在双曲线(>0,>0)中相类似的结论,并证明你的结论.
已知函数,且.(1)求实数,的值;(2)求函数的最大值及取得最大值时的值
已知函数。(1)求的周期和振幅;(2)在给出的方格纸上用五点作图法作出在一个周期内的图象。
已知正项数列满足:(1)求的范围,使得恒成立;(2)若,证明
已知函数(其中a,b为常数且)的反函数的图象经过点A(4,1)和B(16,3)。(1)求a,b的值;(2)若不等式在上恒成立,求实数m的取值范围。
如图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。(1)求椭圆C的方程。(2)证明:直线MA、MB与x轴围成一个等腰三角形。