(本小题满分12分)已知椭圆的中心在原点,焦点在轴上,点、分别是椭圆的左、右焦点,在椭圆的右准线上的点,满足线段的中垂线过点.直线:为动直线,且直线与椭圆交于不同的两点、.(1)求椭圆C的方程;(2)若在椭圆上存在点,满足(为坐标原点),求实数的取值范围;(3)在(Ⅱ)的条件下,当取何值时,的面积最大,并求出这个最大值.
(本小题满分12分) 已知函数 (1)若函数在上为增函数,求正实数的取值范围; (2)当时,求在上的最大值和最小值; (3) 当时,求证:对大于1的任意正整数,都有。
已知直线与曲线交于不同的两点,为坐标原点. (1)若,求证:曲线是一个圆; (2)若,当且时,求曲线的离心率的取值范围.
(本小题满分12分) 如图,四棱锥中,底面为矩形,平面,点分别是和的中点. 求证:平面; 若, 四棱锥外接球的表面积.
(本小题满分12分)、是常数,关于的一元二次方程有实数解记为事件. (1)若、表示投掷两枚均匀骰子出现的点数,求; (2)若、,且,求.
(本小题满分12分) 已知复数,且,其中是的内角,是角所对的边。 求角的大小; 如果,求的面积。