(本小题满分13分) 某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况, 现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表: (1)根据上面频率分布表,求①,②,③,④处的数值 (2)在所给的坐标系中画出区间[80,150]上的频率分布直方图; (3)从整体中任意抽取3个个体,成绩落在[105,120]中的个体数目为ξ ,求ξ的分布列和数 学期望.
已知向量=(,1),=(x,x2),=(-3,-x2+x),函数f(x)=·(+).(1)求函数f(x)的解析式与定义域;(2)求函数f(x)的值域.
设平面内的向量=(1,7),=(5,1),=(2,1),点P是直线OM上的一个动点,求当·取最小值时,的坐标及ÐAPB的余弦值.
若过定点A(2,0)的直线交椭圆+y2=1于不同的两点E、F(点E在点A、F之间),且满足=m,求实数m的取值范围.
设=(4,-3),=(2,1),是否存在实数t,使得+t与的夹角为45º.若存在,求出t的值,若不存在说明理由.
已知,,.是否存在实数,使得.若存在,求出的值,若不存在,说明理由.