(本小题满分12分)已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(1)求此几何体的体积V的大小;(2)求异面直线DE与AB所成角的余弦值;(3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.
已知函数,.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围;(3)设,若对任意的两个实数满足,总存在,使得成立,证明:.
已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3.(1)求椭圆C的方程:(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
已知数列满足:,且。(1)求通项公式;(2)求数列的前n项的和
在直三棱柱中,AA1="AB=BC=3,AC=2," D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求平面A1DB与平面DBB1夹角的余弦值.
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.(1)求甲获得这次比赛胜利的概率;(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.