(本小题满分14分)现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为.(1)试写出,并找出与()的关系式;(2)求数列的通项公式;(3)证明:当时, .
某公司要将一批不易存放的蔬菜从地运到地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:
若这批蔬菜在运输过程中(含装卸时间)损耗为300元/小时,设、两地距离为千米. (1)设采用汽车与火车运输的总费用分别为与,求与的解析式; (2)试根据、两地距离的大小比较采用哪种运输工具更合算(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)
已知函数 (1)当时,求函数的最大值与最小值; (2)求实数的取值范围,使得在区间上是单调函数.
已知集合,,若,求实数的值.
已知等差数列的前4项和为10,且成等比数列, 求数列的通项公式。
设是各项均为正数的等比数列,, 求。