必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤. 如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,. (1)当时,求直线AP与平面BDD1B1所成角的度数; (2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.
已知定点在抛物线:(>0)上,动点且.求证:弦必过一定点.
已知,椭圆C经过点A(1,),两个焦点为(-1,0),(1,0). (1)求椭圆C的方程; (2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
过抛物线(>0)上一定点>0),作两条直线分别交抛物线于,,当与的斜率存在且倾斜角互补时,求出直线的斜率.
如图1,在Rt△ABC中,∠C=90°,D,E分别是AC,AB上的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2. (1)求证:DE∥平面A1CB; (2)求证:A1F⊥BE; (3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.
求证: