首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 331

设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;
(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。

登录免费查看答案和解析

设{an}是由正数组成的等差数列,Sn是其前n项和(1)若S