设{an}是由正数组成的等差数列,Sn是其前n项和(1)若Sn=20,S2n=40,求S3n的值;(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
(本小题满分12分) 命题:方程是焦点在轴上的椭圆, 命题:函数在上单调递增, 若为假,为真,求实数的取值范围.
(本小题满分10分) 设命题:;命题:. 若是的必要不充分条件,求实数的取值范围.
已知抛物线方程为, (1)直线过抛物线的焦点,且垂直于轴,与抛物线交于两点,求的长度。 (2)直线过抛物线的焦点,且倾斜角为,直线与抛物线相交于两点,为原点。求△的面积。
为何值时,直线和曲线有两个公共点?有一个公共点?没有公共点?
双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程.