设{an}是由正数组成的等差数列,Sn是其前n项和(1)若Sn=20,S2n=40,求S3n的值;(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
已知数列前n项和为成等差数列. (I)求数列的通项公式; (II)数列满足,求证:.
如图,四棱柱的底面是平行四边形,且,,,为的中点,平面. (Ⅰ)证明:平面平面; (Ⅱ)若,试求异面直线与所成角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.
在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率.
已知函数,.求: (I)求函数的最小正周期和单调递增区间; (II)求函数在区间上的值域.
已知, (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)若在处有极值,求的单调递增区间; (Ⅲ)是否存在实数,使在区间的最小值是3,若存在,求出的值;若不存在,说明理由.