设{an}是由正数组成的等差数列,Sn是其前n项和(1)若Sn=20,S2n=40,求S3n的值;(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<S成立;(3)是否存在常数k和等差数列{an},使ka-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
已知函数,. (Ⅰ)在所给坐标系中同时画出函数y=f(x)和y=的图象; (Ⅱ)根据(Ⅰ)中图象写出不等式的解集.
(1)用分数指数幂表示下式(a>0,b>0) (2)计算:
选修4-5:不等式选讲 已知函数 (1)解不等式; (2)若函数的图象恒在函数的图象的上方,求实数的取值范围.
选修4-4:极坐标与参数方程 在极坐标系中,直线的极坐标方程为,是上任意一点,点在射线上,且满足,记点的轨迹为. (1)求曲线的极坐标方程; (2)求曲线上的点到直线的距离的最大值.
设函数. (1)当时,求曲线在处的切线方程; (2)当时,的最大值为,求的取值范围.