(本小题满分12分)已知函数的导函数,数列的前项和为,点均在函数的图象上.(Ⅰ)求数列的通项公式及的最大值;(Ⅱ)令,其中,求的前项和.
设函数,且,,求证:(1)且; (2)函数在区间内至少有一个零点; (3)设是函数的两个零点,则.
某化工企业2012年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备年的年平均污水处理费用为(万元)。 (1)用表示; (2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备。
如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点. (1)证明://平面; (2)证明:平面; (3)求直线与平面所成角的正切值.
已知向量,函数 (1)求函数的单调增区间; (2)在中,分别是角A, B, C的对边,且,且 求的值.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图的频率分布直方图. (1)求图中实数的值; (2)若该校高一年级共有学生640人,试估计该校高一年级 期中考试数学成绩不低于60分的人数; (3)若从数学成绩在与两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.