如图,⊙O是△ABC的外接圆,∠A=30°,AB是⊙O的直径,过点C作⊙O的切线,交AB延长线于D,CD=3cm,(1)求⊙O的直径。(2)若动点M以3cm/s的速度从点A出发沿AB方向运动。同时点N以1.5cm/s的速度从B点出发沿BC方向运动。设运动的时间为t(0≤t≤2),连结MN,当t为何值时△BMN为Rt△?并求此时该三角形的面积?
因式分解:(1)ax-8ax+16a;(2)a(x+y)-4b(x+y).
如图,抛物线(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M. (1)求抛物线的表达式; (2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标; (3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD上另一点,且PM=PN. (1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程; (2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由; (3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.
某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同. (1)两种跳绳的单价各是多少元? (2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?
如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE. (1)证明DE∥CB; (2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.