如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
如图所示,课外活动中,小明在离旗杆AB的10米C处,用测角仪测得旗杆顶部A的仰角,已知测角仪器的高CD=1. 5米,求旗杆AB的高.(精确到0.1米)(供选用的数据:,,)
如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m. (1)请你在图中画出此时DE在阳光下的投影; (2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.
(1)解方程:x-2=x(x-2) (2)计算:
甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价,应顾客要求,两件服装均按9折出售,这样商店共获利157元,问甲、乙两件服装的成本各是多少元?
在正方形网格中建立如图5所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标是(4,4),请解答下列问题: (1)将△ABC向下平移5个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标; (2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点A2的坐标; (3)求S△ABC.