(本小题满分10分)选修4-5:不等式选讲已知,求证:.
如图,在三棱柱中,侧棱底面,,为的中点,. (Ⅰ)求证://平面; (Ⅱ)设,求四棱锥的体积.
设是公差大于零的等差数列,已知,. (Ⅰ)求的通项公式; (Ⅱ)设是以函数的最小正周期为首项,以为公比的等比数列,求数列的前项和.
已知函数 (Ⅰ)时,求在处的切线方程; (Ⅱ)若对任意的恒成立,求实数的取值范围; (Ⅲ)当时,设函数,若,求证:.
已知. (Ⅰ)当时,判断的奇偶性,并说明理由; (Ⅱ)当时,若,求的值; (Ⅲ)若,且对任何不等式恒成立,求实数的取值范围.
已知直三棱柱的三视图如图所示,且是的中点. (Ⅰ)求证:∥平面; (Ⅱ)求二面角的余弦值; (Ⅲ)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.