(本小题满分6分)在如图所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立直角坐标系.(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1,C1对应;(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形记为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(3)填空:在(2)中,设原△ABC的外心为M,△A2B2C2的外心为M,则M与M2之间的距离为 .
如图①,在四边形 ABCD 中, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,分别与 BA , CD 的延长线交于点 M , N ,则 ∠ BME = ∠ CNE .
(温馨提示:在图①中,连接 BD ,取 BD 的中点 H ,连接 HE , HF ,根据三角形中位线定理,证明 HE = HF ,从而 ∠ 1 = ∠ 2 ,再利用平行线性质,可证 ∠ BME = ∠ CNE .)
(1)如图②,在四边形 ADBC 中, AB 与 CD 相交于点 O , AB = CD , E , F 分别是 BC , AD 的中点,连接 EF ,分别交 DC , AB 于点 M , N ,判断 △ OMN 的形状,并给予证明;
(2)如图③,在 △ ABC 中, AC > AB , D 点在 AC 上, AB = CD , E , F 分别是 BC , AD 的中点,连接 EF 并延长,与 BA 的延长线交于 G ,若 ∠ EFC = 60 ∘ ,连接 GD ,判断 △ AGD 的形状并证明.
如图,在 ▱ ABCD 中, ∠ ABC = 75 ∘ , AF ⊥ BC 于 F , AF 交 BD 于 E ,若 DE = 2 AB ,求 ∠ AED 的大小.
设直角三角形的两条直角边长分别为 a , b , 斜边长为 c , 若 a , b , c , 均为正数,且 c = 1 3 ab - a + b ,求满足条件的直角三角形的个数.
设 a , b , c , d 为正实数, a < b , c d , bc ad ,有一个三角形的三边长分别为 a 2 + c 2 , b 2 + d 2 , ( b - a ) 2 + ( d - c ) 2 ,求此三角形的面积.
几何模型:
条件:如图①, A , B . 是直线 l 同旁的两个定点
问题:在直线 l 上确定一点 P ,使 PA + PB 的值最小.
方法:作点 A 关于直线 l 的对称点 A ' ,连接 A ' B 交 l 于点 P ,则 PA + PB = A ' B 的值最小(不必证明).
模型应用:
(1)如图②,正方形 ABCD 的边长为 2 , E 为 AB 的中点, P 是 AC 上一动点.连接 BD ,由正方形对称性可知, B 与 D 关于直线 AC 对称.连接 ED 交于 AC 于 P ,则 PB + PE 的最小值是_____;
(2)如图③, ∠ AOB = 45 ° , P 是 ∠ AOB 内一点, PO = 10 , Q , R 分别是 OA , OB 上的动点,求 △ PQR 周长的最小值.