已知是圆上满足条件的两个点,其中是坐标原点,分别过作轴的垂线段,交椭圆于点,动点满足(I)求动点的轨迹方程.(II)设分别表示和的面积,当点在轴的上方,点在轴的下方时,求 的最大面积.
若圆C经过点和,且圆心C在直线上,求圆C的方程.
已知命题p:方程有两个不相等的实根; 命题q:不等式的解集为R;若p∨q为真,p∧q为假,求实数m的取值范围。
已知,α和β为锐角.(Ⅰ)若tan(α+β)=2+,求β;(Ⅱ)若tantanβ=2-,满足条件的α和β是否存在?若存在,请求出α和β的值,若不存在,请说明理由.
已知向量,向量与向量的夹角为,且.(Ⅰ)求向量;(Ⅱ)设向量向量,其中,若,试求的取值范围.
某中学举行了一次“上海世博会知识竞赛”,从全校参加竞赛的学生的试卷中,随机抽取了一个样本,考察竞赛的成绩分布(得分均为整数,满分100分),将样本分成5组,绘成频率分布直方图,图中从左到右各小组的长方形的高之比为1:3:6:4:2,最右边一组的频数是6.请结合直方图提供的信息,解答下列问题:(Ⅰ)样本容量是多少?(Ⅱ)成绩落在那个范围内的人数最多?并求该小组的频数、频率;(Ⅲ)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.