已知的图象经过点,且在处的切线方程(1)求的解析式;(2)求在区间上的最大值及取得最大最值时x的值.
设函数。 (Ⅰ)若时,函数取得极值,求函数的图像在处的切线方程; (Ⅱ)若函数在区间内不单调,求实数的取值范围。
已知=(cosα,sinα),=(cosβ,sinβ),与之间有关系|k+|=|-k|,其中k>0,(Ⅰ)用k表示; (Ⅱ)求·的最小值,并求此时与的夹角的大小。
已知函数,其中为常数. (1)当时,求函数的单调递增区间; (2)若任取,求函数在上是增函数的概率.
在△ABC中,内角A,B,C所对边长分别为,,,. (1)求的最大值及的取值范围; (2)求函数的最大值和最小值.
已知集合A={x|x2-ax+a2-19=0},集合B={x|log2(x2-5x+8)=1},集合C={x|m=1,m≠0,|m|≠1}满足A∩B≠,A∩C=,求实数a的值;