(本小题满分分)如图,点从点出发,按着的速率沿着边长为正方形的边运动,到达点后停止,求面积与时间的函数关系式并画出函数图像。
设集合. (Ⅰ)求; (Ⅱ)若,求的取值范围.
已知函数 (I)求的最小正周期与单调递减区间; (II)在△ABC中,分别是角A、B、C的对边,若△ABC的面积为,求的值
设二次函数的图像过原点,,的导函数为,且, (1)求函数,的解析式; (2)求的极小值; (3)是否存在实常数和,使得和若存在,求出和的值;若不存在,说明理由。
已知函数的定义域为,且满足条件:①,②③当. (1)求证:函数为偶函数; (2)讨论函数的单调性; (3)求不等式的解集
(本小题満分12分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点. (Ⅰ)求直线AC与PB所成角的余弦值; (Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.