(本小题满分13分)如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD.(Ⅰ)求证:PD⊥BC;(Ⅱ)若AB=6,PC=6,求二面角P-AD-C的大小;(Ⅲ)在(Ⅱ)的条件下,求异面直线PB与DE所成角的余弦值.
已知函数(1)判断函数的对称性和奇偶性;(2)当时,求使成立的的集合;(3)若,记,且在有最大值,求的取值范围.
正方体.ABCD- 的棱长为l,点F、H分别为为、A1C的中点.(1)证明:∥平面AFC;. (2)证明B1H平面AFC.
已知向量,(1)若求的值;(2)设,求的取值范围.
已知二次函数+的图象通过原点,对称轴为,是的导函数,且 .(I)求的表达式; (II)若数列满足,且,求数列的通项公式; (III)若,,是否存在自然数M,使得当时 恒成立?若存在,求出最小的M;若不存在,说明理由。
某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备年的年平均污水处理费用(万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?