某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组.下图是按上述分组方法得到的频率分布直方图。(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在内的所有学生中随机抽取两名同学,设其测试成绩分别为,,求事件“”概率.
如图,已知四棱锥的底面是正方形,侧棱底面,,是的中点.(1)证明平面;(2)求二面角的余弦值.
在数列中,,且对任意的,都有.(1)求证:数列是等差数列;(2)设数列的前项和为,求证:对任意的,都为定值.
已知函数,,k为非零实数.(Ⅰ)设t=k2,若函数f(x),g(x)在区间(0,+∞)上单调性相同,求k的取值范围;(Ⅱ)是否存在正实数k,都能找到t∈[1,2],使得关于x的方程f(x)=g(x)在[1,5]上有且仅有一个实数根,且在[-5,-1]上至多有一个实数根.若存在,请求出所有k的值的集合;若不存在,请说明理由.
用0,1,2,3,4,5这六个数字:(Ⅰ)可组成多少个无重复数字的自然数? (Ⅱ)可组成多少个无重复数字的四位偶数?(Ⅲ)组成无重复数字的四位数中比4023大的数有多少?
由下列不等式:,,,,…,你能得到一个怎样的一般不等式?并加以证明.