如图,抛物线与x轴交于A、B两点(A点在B点左侧),与y轴交于点C,对称轴为直线,OA = 2,OD平分∠BOC交抛物线于点D(点D在第一象限).(1)求抛物线的解析式和点D的坐标;(2)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.(3)点M是抛物线上的动点,在x轴上是否存在点N,使A、D、M、N四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的M点坐标;如果不存在,请说明理由.
如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整. ∵EF∥AD,( ) ∴∠2=.(两直线平行,同位角相等;) 又∵∠1=∠2,( ) ∴∠1=∠3.( ) ∴AB∥DG.( ) ∴∠BAC+=180°( ) 又∵∠BAC=70°,( ) ∴∠AGD= .
解不等式组,并把解集在数轴上表示出来.
解方程组.
如图1,已知一次函数y=-x+6分别与x、y轴交于A、B两点,过点B的直线BC交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
为表彰在“深圳读书月”活动中表现积极的同学,某班级决定购买文具盒与钢笔作为奖品.已知3个文具盒、2支钢笔共需72元;1个文具盒、2支钢笔共需44元.(1)每个文具盒、每支钢笔各多少元?(2)时逢“元旦”,商店举行优惠促销活动,具体办法如下:文具盒九折,钢笔10支以上超出部分八折.设买x1个文具盒需要y1元,买x2支钢笔需要y2元,求y1、y2关于x的函数关系式,并写出自变量的取值范围.