.如图,将腰长为的等腰Rt△ABC(∠C是直角)放在平面直角坐标系中的第二象限,其中点A在y轴上,点B在抛物线y=ax2+ax-2上,点C的坐标为(-1,0).(1)点A的坐标为 ,点B的坐标为 ;(2)抛物线的关系式为 ,其顶点坐标为 ;(3)将三角板ABC绕顶点A逆时针方向旋转90°,到达的位置.请判断点、是否在(2)中的抛物线上,并说明理由.
北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销.商场又用68000元购进第二批这种运动服,所够数量是第一批购进数量的2倍,但每套进价多了10元. (1)该商场两次共购进这种牌运动服多少套? (2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?()
已知:如图,⊙O是△ABC的外接圆,AB为⊙O直径,且PA⊥AB于点A,PO⊥AC于点M. (1)求证:是⊙的切线; (2)当,时,求PC的长.
如图,在□ABCD中,E、F分别是AB、CD的中点,连接AF、CE. (1)求证:△BEC≌△DFA; (2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
在本学期某次考试中,某校初二⑴、初二⑵两班学生数学成绩统计如下表:
请根据表格提供的信息回答下列问题: (1)初二⑴班平均成绩为_________分,初二⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次? (2)二⑴班众数为________分,二⑵班众数为________分。 (3)初二⑴班及格率为_________,初二⑵班及格率为________。 (4)已知二⑴班的方差大于二⑵班的方差,那么说明什么?
某中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C点测得旗杆顶端A的仰角为30°,向前走了6米到达D点,在D点测得旗杆顶端A的仰角为60°(测角器的高度不计). (1)米; (2)求旗杆AB的高度(结果保留1位小数,).