如图所示,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC.(1)求证:ACO=BCD. (2)若EB=8cm,CD=24cm,求⊙O的直径.
已知关于的一元二次方程.(1)求证:方程有两个实数根;(2)当此方程有一个根是时,求关于的二次函数的表达式;(3)在(2)的条件下,若点A与点B()在关于的二次函数的图象上,将此二次函数的图象在上方的部分沿翻折,图象的其它部分保持不变,得到一个新图象,当这个新图象与x轴恰好只有两个公共点时,n的取值范围是_________________________________________.
小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图. (1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;(2)求小明的综合得分是多少?(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?
如图,在直角坐标系xoy中,点A是反比例函数y1=的图象上一点,AB⊥x轴的正半轴于点B,C是OB的中点,一次函数y2=ax+b的图象经过A、C两点,并交y轴于点D(0,-2),若S△AO D=4.(1)求反比例函数和一次函数的表达式;(2)观察图象,请指出在y轴的右侧,当y1>y2时x的取值范围.
如图,在□ABCD中,E是对角线AC的中点,EF⊥AD于F,∠B=60°,AB=4,∠ACB=45°,求DF的长.
用配方法解方程:.