(本题10分)已知等差数列满足,为的前项和.(1)求通项及当为何值时,有最大值,并求其最大值。(2)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
在长方体中,,,、 分别为、的中点.(1)求证:平面;(2)求证:平面.
已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。(1)求双曲线的方程;(2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。
已知双曲线方程2x2-y2=2.(1)求以A(2,1)为中点的双曲线的弦所在的直线方程;(2)过点(1,1)能否作直线l,使l与双曲线交于Q1,Q2两点,且Q1,Q2两点的中点为(1,1)?如果存在,求出它的方程;如果不存在,说明理由.
在抛物线 y2=4x上恒有两点关于直线l:y=kx+3对称,求k的范围.
设直线与双曲线交于A、B,且以AB为直径的圆过原点,求点的轨迹方程.