(1)写出数列的前3项;(2)求数列的通项公式(写出推证过程);(3)设,是数列的前项和,求使得对所有nN+都成立的最小正整数的值。
如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。(1)证明:PA⊥BD;(2)设PD=AD,求二面角A-PB-C的余弦值.
如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.
如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。求证:(1)PA∥平面BDE(2)平面PAC平面BDE
设数列的前项和为, (1)若,求; (2)若,求的前6项和;(3)若,证明是等差数列.
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产. ①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?