已知向量(1)若; (2)若函数在区间(—1,1)上是增函数,求t的取值范围。
如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角.(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为,,问点P在何处时,最小?
如图,在正三棱锥中,,分别为,的中点.(1)求证:平面;(2)求证:平面平面.
已知.(1)若,求的值;(2)若,且,求的值.
已知为等差数列,且,公差.(1)数列满足结论;;试证:;(2)根据(1)中的几个等式,试归纳出更一般的结论,并用数学归纳法证明.
【原创】甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).