如图, 在直三棱柱中,,,,点是 的中点,(1) 求证:; (2) 求证:.
(本小题满分12分)已知为复数,和均为实数,其中是虚数单位. (Ⅰ)求复数和; (Ⅱ)若在第四象限,求的范围.
(本小题满分14分)已知椭圆上的点到左右两焦点的距离之和为,离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线交椭圆于两点. (1)若轴上一点满足,求直线斜率的值; (2)是否存在这样的直线,使的最大值为(其中为坐标原点)?若存在,求直线方程;若不存在,说明理由.
(本小题满分13分)已知数列的前项和,满足为常数,且,且是与的等差中项. (Ⅰ)求的通项公式; (Ⅱ)设,求数列的前项和.
(本小题满分12分)如图,已知平面是正三角形,. (Ⅰ)在线段上是否存在一点,使平面? (Ⅱ)求证:平面平面; (Ⅲ)求二面角的余弦值.
(本小题满分12分)已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为,且. (Ⅰ)求此抛物线的方程; (Ⅱ)过点做直线交抛物线于两点,求证:.