(本题满分12分)若实数、、满足,则称比接近. (1)若比3接近0,求的取值范围; (2)对任意两个不相等的正数、,证明:比接近; (3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最值和单调性(结论不要求证明).
(本小题满分12分)甲,乙,丙三个同学同时报名参加某重点高校2012年自主招生.高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.(1)求甲,乙,丙三人中只有一人通过审核的概率;(2)设甲,乙,丙三人中获得自主招生入选资格的人数为,求随机变量的期望.
(本小题满分10分)在中,的对边分别为,且.(1)求的值;(2)若,,求和.
(本小题满分l4分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;(Ⅲ)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分12分)已知等差数列{an}的前n项和为Sn,且a3=5,S15="225." (Ⅰ)求数列{an}的通项an;(Ⅱ)设bn=+2n,求数列{bn}的前n项和Tn.
(本小题满分14分)已知直线相交于A、B两点。(1)若椭圆的离心率为,焦距为2,求椭圆的标准方程;(2)若(其中O为坐标原点),当椭圆的离率时,求椭圆的长轴长的最大值。