(本题满分10分)甲乙两地相距 km,汽车从甲地匀速行驶到乙地,速度不得超过 km/h,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度 km/h的平方成正比,比例系数为,固定部分为元.(1)把全程运输成本(元)表示为速度(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?
本题满分14分)四棱锥P-ABCD中,底面ABCD为直角梯形,,AD∥BC, AB="BC=2," AD="4," PA⊥底面ABCD,PD与底面ABCD成角,E是PD的中点. (1)点H在AC上且EH⊥AC,求的坐标;(2)求AE与平面PCD所成角的余弦值;
(本小题满分16分)在数列中,,(≥2,且),数列的前项和.(1)证明:数列是等比数列,并求的通项公式;(2)求;(3)设,求的最大值.
(本小题满分16分)在任何两边都不相等的锐角三角形ABC中,已知角A、B、C的对边分别为a、b、c且 (1)求角B的取值范围;(2)求函数的值域; (3)求证:
(本题满分15分)如图所示,某学校的教学楼前有一块矩形空地,其长为32米,宽为18米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为米与米均不小于2米,且要求“转角处”(图中矩形)的面积为8平方米(1) 试用表示草坪的面积,并指出的取值范围(2) 如何设计人行道的宽度、,才能使草坪的面积最大?并求出草坪的最大面积。
(本题满分15分)已知二次函数的二次项系数为,且不等式的解集为.(1)若方程有两个相等的实数根, 求的解析式;(2)若的最大值为正数,求的取值范围.