(本题满分15分)已知二次函数的二次项系数为,且不等式的解集为.(1)若方程有两个相等的实数根, 求的解析式;(2)若的最大值为正数,求的取值范围.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点.(Ⅰ)求证:面;(Ⅱ)求点到面的距离.
若函数,的定义域都是集合,函数和的值域分别为和.(Ⅰ)若,求;(Ⅱ)若,且,求实数m的值.
已知椭圆,椭圆的右焦点为F.(1)求过点F且斜率为1的直线被椭圆截得的弦长.(2)求以M(1,1)为中点的椭圆的弦所在的直线方程.(3)过椭圆的右焦点F的直线l交椭圆于A,B,求弦 AB的中点P的轨迹方程.
已知正四棱柱中,.(Ⅰ)求证:;(Ⅱ)求钝二面角的余弦值;(Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.
已知动圆与圆相切,且与圆相内切,记圆心的轨迹为曲线,求曲线的方程.