(本小题满分12分)已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。(1)求四棱锥P-ABCD的体积;(2)若点E为PC的中点,,求证EO//平面PAD;(3)是否不论点E在何位置,都有BD⊥AE?证明你的结论。
某同学参加高二学业水平测试的4门必修科目考试,已知该同学每门学科考试成绩达到“A”等级的概率均为,且每门考试成绩的结果互不影响. 求该同学至少得到两个“A”的概率; (2)已知在高考成绩计分时,每有一科达到“A”,则高考成绩加1分,如果4门学科均达到“A”,则高考成绩额外再加1分.现用随机变量Y表示该同学学业水平测试的总加分,求Y的概率分布列和数学期望.
如图,单位正方形OABC在二阶矩阵T的作用下,变成菱形OA1B1C1.求矩阵T;设双曲线F:x2-y2=1在矩阵T对应的变换作用下得到曲线F´,求曲线F´的方程.
已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的非负半轴重合,且长度单位相同.若圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l与圆C交于A,B两点. (1)求圆C的直角坐标方程与直线l的普通方程; (2)求弦AB的长.
已知函数,,其中. (1)当时,求曲线在点处的切线方程; (2)若存在,使得成立,求实数M的最大值; (3)若对任意的,都有,求实数的取值范围.
已知二次函数(R). (1)解不等式; (2)函数在上有零点,求的取值范围.