某学校校办工厂有毁坏的房屋一座,留有一面14m的旧墙,现准备利用这面墙的一段为面墙,建造平面图形为矩形且面积为126的厂房(不管墙高),工程的造价是:(1)修1m旧墙的费用是造1m新墙费用的25%;(2)拆去1m旧墙用所得的材料来建1m新墙的费用是建1m新墙费用的50%.问如何利用旧墙才能使建墙的费用最低?
如图,直三棱柱中,D是的中点. (1)证明:平面; (2)设,求异面直线与所成角的大小.
已知函数. (1)求函数的周期及单调递增区间; (2)在中,三内角A,B,C的对边分别为,已知函数的图象经过点,若,求a的值.
已知圆C经过点,和直线相切,且圆心在直线上. (1)求圆C的方程; (2)已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.
已知. (Ⅰ)关于的不等式恒成立,求实数的取值范围; (Ⅱ)设,且,求证:.
已知函数. (Ⅰ)当时,解不等式; (Ⅱ)当时,恒成立,求的取值范围.