某学校校办工厂有毁坏的房屋一座,留有一面14m的旧墙,现准备利用这面墙的一段为面墙,建造平面图形为矩形且面积为126的厂房(不管墙高),工程的造价是:(1)修1m旧墙的费用是造1m新墙费用的25%;(2)拆去1m旧墙用所得的材料来建1m新墙的费用是建1m新墙费用的50%.问如何利用旧墙才能使建墙的费用最低?
如图所示,正方体ABCD-A1B1C1D1中,E、F分别是AB、BC的中点,G为DD1上一点,且D1G:GD=1:2,AC∩BD=O,求证:平面AGO//平面D1EF.
如图所示,三个平面两两相交,有三条交线,求证这三条交线交于一点或互相平行.
设P是△ABC所在平面外一点,P和A、B、C的距离相等,∠BAC为直角.求证:平面PCB⊥平面ABC.
把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母线长.
画出下列三视图所表示的几何体:(1)主视图 左视图 俯视图(2)主视图 左视图 俯视图