已知函数,设。(Ⅰ)求F(x)的单调区间;(Ⅱ)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值。(Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
已知函数f(x)=x3-x,数列{an}满足条件:a1≥1,an+1≥f'(an+1).试比较+++…+与1的大小,并说明理由.
设函数f(x)满足2f(x)-f()=4x-+1,数列{an}和{bn}满足下列条件:a1=1,an+1-2an=f(n),bn=an+1-an(n∈N*). (1)求f(x)的解析式. (2)求{bn}的通项公式bn. (3)试比较2an与bn的大小,并证明你的结论.
用数学归纳法证明不等式:++…+>(n∈N*且n>1).
用数学归纳法证明:++…+=(n∈N*).
已知函数f(x)=在点(-1,f(-1))处的切线方程为x+y+3=0. (1)求函数f(x)的解析式. (2)设g(x)=lnx.求证:g(x)≥f(x)在[1,+∞)上恒成立.