如图在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,过D与PB垂直的平面分别交PB、PC于F、E。PD=DC。(1)求证:DE⊥PC(2)求证:PA//平面EDB;(3)求二面角C—PB—D的大小。
(1)计算:+(lg 5)0+; (2)解方程:log3(6x-9)=3.
已知函数f(x)=x+,且f(1)=3. (1)求m; (2)判断函数f(x)的奇偶性.
已知全集,集合, (1)用列举法表示集合A与B; (2)求及
(本小题满分12分)设O为坐标原点,曲线上有两点P,Q关于直线对称. (1)求实数m的值; (2)是否存在直线PQ,满足,若存在求出直线方程;若不存在,说明理由.
(本小题满分12分)某高级中学共有学生2 000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19. (1)求x的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名? (3)已知y≥245,z≥245,求高三年级中女生比男生多的概率.