(本小题满分分)(Ⅰ)若是公差不为零的等差数列的前n项和,且成等比数列,求数列的公比; (II)设是公比不相等的两个等比数列,,证明数列不是等比数列。
证明不等式:
已知函数. (Ⅰ)求函数的单调递增区间; (Ⅱ)求函数在的最大值和最小值.
求下列函数的导数. (Ⅰ)(Ⅱ) (Ⅲ)(Ⅳ).
定义在上的函数,对于任意的m,n∈(0,+∞),都有成立,当x>1时,. (1)求证:1是函数的零点; (2)求证:是(0,+∞)上的减函数; (3)当时,解不等式.
已知向量a=,b=,c=, (1)求证:(a+b)⊥(a-b); (2)设函数,求的最大值和最小值.[来