如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.(1)证明:PA⊥平面ABCD;(2)求以AC为棱,EAC与DAC为面的二面角的大小.
如图所示,圆O的两弦AB和CD交于点E, EF∥CB,EF交AD的延长线于点F,FG切圆O于点G. (1)求证:△DFE∽△EFA; (2)如果EF=1,求FG的长.
从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点. 求证:=.
已知:如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求证:AE·BF·AB=CD3.
已知:如图所示,在△ABC中,D是BC的中点,F是BA延长线上的点,FD与AC交于点E.求证:AE·FB=EC·FA.
如图所示,已知D为△ABC的BC边 上一点,⊙O1经过点B,D,交AB于另一点E,⊙O2经过 点C,D,交AC于另一点F,⊙O1与⊙O2交于点G. (1)求证:∠EAG=∠EFG; (2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.