某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100](Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)求出本次评分的众数、中位数、平均数.
已知数列满足(I)求数列的通项公式;(II)证明:
O为坐标原点,直线在轴和轴上的截距分别是和,且交抛物线两点。(1)写出直线的截距式方程(2))证明:(3)当时,求的大小。
已知函数(1)判断函数的奇偶性;(2)若在区间是增函数,求实数的取值范围。
如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。(Ⅰ)求证:BH//平面A1EFD1;(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。
已知数列是等差数列,,,为数列的前项和(1)求和; (2)若,求数列的前项和