(本小题满分14分)已知圆和轴相切,圆心在直线上,且被直线 截得的弦长为,求圆的方程.
如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.(1) 求证:平面AB1C1⊥平面AC1;(2) 若AB1⊥A1C,求线段AC与AA1长度之比;(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.
已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令 bn= (nN*),求数列的前n项和.
设函数。求(1)的值域;(2)记的内角A、B、C的对边长分别为a,b,c,若=1,b=1,c=,求a的值。
(本小题满分12分)设为实数,且(1)求方程的解;(2)若,满足,试写出与的等量关系(至少写出两个);(3)在(2)的基础上,证明在这一关系中存在满足.
(本小题满分12分)已知定义在上的函数为常数,若为偶函数,(1)求的值;(2)判断函数在内的单调性,并用单调性定义给予证明;(3)求函数的值域.